PL EN RU
MATHEMATICAL MODELS IN POLITICAL SCIENCE – THEORETICAL FOUNDATIONS AND SAMPLE USES
 
 
More details
Hide details
1
adiunkt w Instytucie Nauk Politycznych i Dziennikarstwa Uniwersytetu Śląskiego w Katowicach
Publication date: 2019-12-15
 
Studia Politologiczne 2019;53
 
KEYWORDS
ABSTRACT
issues related to mathematical modelling in political science, alongside selected examples of using mathematical modelling in research practice. In the process, the function of scientific models in the development of scientific theories is discussed, indicating the main types of scientific models. Then, selected elements of the theory of mathematical models are considered and the most common misunderstandings in using the language of mathematics in political science studies are described. Finally, selected examples of using mathematical models in studies of political phenomena are presented: a quadratic-hyperbolic model of the real global GDP growth dynamics and a game theory model of the transmission of cooperative behaviours among political elites were developed. The R programme was used to build the models.
PEER REVIEW INFORMATION
Article has been screened for originality
 
REFERENCES (25)
1.
Andreski S., Czarnoksięstwo w naukach społecznych, Warszawa 2002.
 
2.
Arce D. G., Sandler T., An evolutionary game approach to fundamentalism and conflict, „Journal of Institutional and Theoretical Economics” 2003, nr 1.
 
3.
DeLong J. B., Estimates of World GDP, One Million B.C. – Present, 1998, http://delong.typepad.com/prin... (dostęp: 06.01.2019).
 
4.
Downs A., An Economic Theory of Democracy, New York 1957.
 
5.
Dörner D., Modellbildung und Simulation, [w:] E. Roth (red.), Sozialwissenschaftliche Methoden, München 1984.
 
6.
Fiorina M. P., Formal models in political science, „American Journal of Political Science” 1975, nr 1.
 
7.
Grinin L. E., Markov A. V., Korotayev A. V., Mathematical modeling of biological and social evolutionary macrotrends, [w:] L. E. Grinin, A. V. Korotayev (red.), History and Mathematics: Trends and Cycles, Volgograd 2014.
 
8.
Grobler A., Metodologia nauk, Warszawa 2006.
 
9.
Korotayev A. V., Grinin L. E., Global urbanization and political development of the world system, [w:] L. E. Grinin, I. Ilyin, A. V. Korotayev (red.), Globalistics and Globalization Studies, Moscow–Volgograd 2012.
 
10.
Krauz-Mozer B., Teorie polityki. Założenia metodologiczne, Warszawa 2005.
 
11.
Li H., Wu Ch., Yuan M., An evolutionary game model of financial markets with heterogeneous players, „Procedia Computer Science” 2013, nr 17.
 
12.
Maynard Smith J., Evolution and the Theory of Games, Cambridge 1982.
 
13.
McEvedy C., Jones R., Atlas of World Population History, London 1979.
 
14.
Muciek A., Wyznaczanie modeli matematycznych z danych eksperymentalnych, Wrocław 2012, http://www.dbc.wroc.pl/ Content/19612/muciek_wyznaczanie_modeli.pdf (dostęp: 06.01.2019).
 
15.
Newton I., Philosophiae Naturalis Principia Mathematica, Londini 1687, http://www.gutenberg.org/files... (dostęp: 06.01.2019).
 
16.
Nikitin E., Wyjaśnianie jako funkcja nauki, Warszawa 1975.
 
17.
Nowak L., O ukrytej jedności nauk społecznych i nauk przyrodniczych, „Nauka” 1998, 1, http:// www.staff.amu.edu.pl/~epistemo... (dostęp: 06.01.2019).
 
18.
Nowak S., Metodologia badań społecznych, Warszawa 2008.
 
19.
Pabis S., Metodologia i metody nauk empirycznych, Warszawa 1985.
 
20.
Riker W. H., Ordeshook P.C., A theory of the calculus of voting, „The American Political Science Review” 1968, nr 1.
 
21.
Sandholm W. H., Population Games and Evolutionary Dynamics, Cambridge, MA 2010.
 
22.
Suppes P., The desirability of formalization in science, „The Journal of Philosophy” 1968, nr 65.
 
23.
Sztumski J., Wstęp do metod i technik badań społecznych, Katowice 2005.
 
24.
Taylor P. D., Jonker L. B., Evolutionarily stable strategies and game dynamics, „Mathematical Biosciences” 1978, nr 1–2.
 
25.
Troitzsch K. G., Modellbildung und Simulation in den Sozialwissenschaften, Opladen 1990.
 
ISSN:1640-8888